Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiu-Rong Hu* and Jian-Ming Gu

Centre of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028,
People's Republic of China

Correspondence e-mail:
huxiurong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.098$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-[4-Cyano-3-(trifluoromethyl)phenyl]-3-(4-fluorophenylsulfonyl)-2-hydroxy-2-methylpropionamide

The structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, consists of molecules that pack in a linear hydrogen-bonded chain along the c axis. This hydrogen-bonding arrangement involves the hydroxy group and one of the sulfonyl O atoms.

Comment

The title compound, (I), also known as bicalutamide, belongs to a class of drugs called anti-androgens. It is thought to prevent the growth of prostate cancer by blocking the effects of androgens on the cancer cells (Bohl et al., 2005; Tucker et al., 1988). Two polymorphs of bicalutamide have been reported previously (Tetsuya et al., 2003; Westheim \& Raymond, 2004), but their crystal structures were not studied. We report here the crystal structure of the title compound, (I).

In the crystal structure of (I), the hydroxy group and one of the sulfonyl O atoms are involved in a hydrogen-bonded network (Table 2). The crystal packing is influenced by this intermolecular hydrogen-bond interaction, which links the molecules into a chain propagating along the c axis. The cyano group deviates slightly from the plane of the benzene ring (C5-C10) and the deviations of atoms C11 and N32 are 0.106 (3) and 0.196 (4) \AA, respectively. The CN group is not conjugated with the benzene ring, resulting in a longer bond length for $\mathrm{C} 8-\mathrm{C} 11$ (Table 1) compared to a Csp ${ }^{2}-\mathrm{Csp}^{2}$ bond. The two benzene rings in (I) form a dihedral angle of $40.35(7)^{\circ}$.

Experimental

N-(4-Cyano-3-trifluoromethylphenyl)-3-(4-fluorophenylsulfanyl)-2-hydroxy-2-methylpropionamide $(25.0 \mathrm{~g}, \quad 63 \mathrm{mmol}), \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (600 ml) and $85 \% \mathrm{~m}$-chloroperoxybenzoic acid $(22.0 \mathrm{~g}, 123 \mathrm{mmol}$) were mixed in a three-necked bottle and stirred at room temperature for $24 \mathrm{~h} . \mathrm{Na}_{2} \mathrm{SO}_{4}(500 \mathrm{ml}, 10 \%)$ was then added to the solution and it was stirred for 15 min . The organic part was extracted and washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (saturated, $3 \times 200 \mathrm{ml}$) and NaCl (saturated, $2 \times$ $150 \mathrm{ml})$ and dried using anhydrous MgSO_{4}; the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was recovered by vacuum distillation. The final product was recrystallized from an ethanol solution and a crystalline product (21.5 g , yield 83%) was obtained (Sepp-Lorenzino \& Slovin, 2000; Thurlow, 1998). This was recrystallized from chloroform, giving colourless crystals of (I) suitable for X-ray diffraction.

Received 17 October 2005 Accepted 24 October 2005 Online 31 October 2005

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=430.37$
Monoclinic, $P 2_{1} / c$
$a=14.882(5) \AA$
$b=12.213(3) \AA$
$c=10.461(3) \AA$
$\beta=104.680(13)^{\circ}$
$V=1839.3(9) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.881, T_{\text {max }}=0.959$
17686 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.098$
$S=1.00$
4206 reflections
262 parameters

Table 1
Selected bond lengths (\AA).

$\mathrm{O} 21-\mathrm{C} 2$	$1.416(2)$	$\mathrm{N} 31-\mathrm{C} 5$	$1.401(2)$
$\mathrm{O} 22-\mathrm{C} 4$	$1.215(2)$	$\mathrm{N} 32-\mathrm{C} 11$	$1.135(2)$
$\mathrm{N} 31-\mathrm{C} 4$	$1.355(2)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.446(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21-\mathrm{H} 211 \cdots \mathrm{O} 23^{\mathrm{i}}$	0.91	2.47	$2.856(2)$	106
Symmetry code: (i) $+x,-y+\frac{1}{2},+z-\frac{1}{2}$.				

The H atoms of the hydroxy and amido groups were located in difference Fourier maps and included in the refinement based on the as-found $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths, but their isotropic displacement paramenters were initially refined and then fixed in the final stage. The other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and included in the refinement in the riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {methylene }}\right.$ and $\left.\mathrm{C}_{\text {aromatic }}\right)$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Figure 1
A view of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitary radii.

Figure 2
A chain of molecules in (I). Displcement ellipsoids are drawn at the 30\% probability level and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (iii) $x, y, 1+z$.]

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bohl, C. E., Gao, W.-Q., Miller, D. D., Bell, C. E. \& Dalton, J. T. (2005). Pharmacology, 102, 6201-6206.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
Sepp-Lorenzino, L. \& Slovin, S. (2000). Expert Opin. Ther. Pat. 10, 1833-1842.
Tetsuya, S., Tadashi, K. \& Nobushige, I. (2003). US Patent 2003191337.
Tucker, H., Crook, J. W. \& Chesterson, G. J. (1988). J. Med. Chem. 31, 954-959.
Thurlow, R. J. (1998). Emerging Drugs, 3, 225-246.
Westheim, R. J. H.. \& Raymond, J. H. (2004). Eur. Patent EP 1542965.

